
Week 13 - Wednesday



 What did we talk about last time?
 Finished load balancing approximation
 Set cover approximation







 U2 has 17 minutes to cross a bridge for a concert
 Plan a way to get them across in the darkness
 They have one flashlight
 A maximum of two people can cross the bridge at one 

time, and one of them must have the flashlight
 The flashlight must be walked back and forth
 Each band member walks at a different speed
 Bono: 1 minute to cross
 The Edge: 2 minutes to cross
 Adam: 5 minutes to cross
 Larry: 10 minutes to cross

 A pair must walk together at the rate of the slower 
man's pace





 We've seen knapsack in dynamic programming (but with a 
pseudo-polynomial running time)

 We've seen knapsack as an NP-complete problem
 Now, can we approximate it in fully polynomial time?
 Recall:
 We have n items
 Each item has a weight wi and a value vi

 We want to maximize total value without going over our weight 
capacity W



 Our algorithm will take those items and the capacity W as well 
as a parameter ε

 We will find a set of items S within the weight capacity whose 
value is at worst 1

1+𝜀𝜀
of the optimal!

 And the algorithm will be polynomial for any particular choice 
of ε
 But it will not be polynomial in ε, if that makes sense

 This kind of algorithm is called a polynomial-time 
approximation scheme (PTAS)



 We had a pseudo-polynomial algorithm for knapsack that ran 
in time O(nW)

 The book gives details on how we can flip around weights and 
values to get a dynamic programming knapsack algorithm 
that runs in time O(n2v*) where v* is the largest value of any 
item (if values are integers)

 Let's assume that algorithm is correct and build our 
approximation algorithm out of it



 If v* is a small integer, then we can run the algorithm as is
 However, if v* is large, we can round the values up and use small 

integers instead:
 v1 = 1,983,929
 v2 = 2,437,888
 v3 = 621,653

 Rounding up to millions we get
 v1 = 2,000,000
 v2 = 3,000,000
 v3 = 1,000,000

 We can treat those values like 2, 3, and 1, respectively



 We use a rounding factor b
 Each rounded value �𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖/𝑏𝑏 𝑏𝑏
 Note that 𝑣𝑣𝑖𝑖 ≤ �𝑣𝑣𝑖𝑖 ≤ 𝑣𝑣𝑖𝑖 + 𝑏𝑏
 To get small values, we can scale the rounded values down by 

b:

�𝑣𝑣𝑖𝑖 =
�𝑣𝑣𝑖𝑖
𝑏𝑏

= 𝑣𝑣𝑖𝑖/𝑏𝑏
 Note that the knapsack problem with values �𝑣𝑣𝑖𝑖 has the same 

optimum solution as the problem with �𝑣𝑣𝑖𝑖, if you scale the 
answers by b



 Knapsack-Approx(ε)
 Set b = (ε/(2n)) maxi vi

 Solve the Knapsack problem with values �𝑣𝑣𝑖𝑖
 Return the set S of items found



 We only rounded the values, not the weights, so the answer 
we get is legal

 The algorithm we use as a subroutine runs in time O(n2v*) 
where v* is the biggest value

 Since b = (ε/(2n)) maxi vi, the biggest value vj will also have the 
biggest rounded value:

�𝑣𝑣𝑗𝑗 = 𝑣𝑣𝑗𝑗/𝑏𝑏 =
𝑣𝑣𝑗𝑗

𝑣𝑣𝑗𝑗𝜀𝜀/(2𝑛𝑛)
=

2𝑛𝑛
𝜀𝜀

= 𝑐𝑐 � 𝑛𝑛𝜀𝜀−1

 So our algorithm on rounded values runs in time O(n3ε-1)



 Claim:
 If S is the solution found by our approximation algorithm and S* is 

any other solution such that ∑𝑖𝑖∈𝑆𝑆∗ 𝑤𝑤𝑖𝑖 ≤ 𝑊𝑊, then (1 + 𝜀𝜀)∑𝑖𝑖∈𝑆𝑆 𝑣𝑣𝑖𝑖 ≥
∑𝑖𝑖∈𝑆𝑆∗ 𝑣𝑣𝑖𝑖.

 Proof:
 Let S* be any set such that ∑𝑖𝑖∈𝑆𝑆∗ 𝑤𝑤𝑖𝑖 ≤ 𝑊𝑊.
 Our algorithm finds the optimal solution with values �𝑣𝑣𝑖𝑖 so 

�
𝑖𝑖∈𝑆𝑆

�𝑣𝑣𝑖𝑖 ≥ �
𝑖𝑖∈𝑆𝑆∗

�𝑣𝑣𝑖𝑖



 The rounded values are close to the real values, so

�
𝑖𝑖∈𝑆𝑆∗

𝑣𝑣𝑖𝑖 ≤ �
𝑖𝑖∈𝑆𝑆∗

�𝑣𝑣𝑖𝑖 ≤�
𝑖𝑖∈𝑆𝑆

�𝑣𝑣𝑖𝑖 ≤�
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖 + 𝑏𝑏 ≤ 𝑛𝑛𝑛𝑛 + �
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖

 To make sense of this, we need to bound nb
 Let j be the item with the largest value
 By our choice of b, 𝑣𝑣𝑗𝑗 = 2𝜀𝜀−1𝑛𝑛𝑛𝑛, making 𝑣𝑣𝑗𝑗 = �𝑣𝑣𝑗𝑗
 Assuming that each item could fit by itself in the knapsack

�
𝑖𝑖∈𝑆𝑆

�𝑣𝑣𝑖𝑖 ≥ �𝑣𝑣𝑗𝑗 = 2𝜀𝜀−1𝑛𝑛𝑛𝑛



 On the previous slide, we established that ∑𝑖𝑖∈𝑆𝑆 𝑣𝑣𝑖𝑖 ≥ ∑𝑖𝑖∈𝑆𝑆 �𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑛𝑛
 Since ∑𝑖𝑖∈𝑆𝑆 �𝑣𝑣𝑖𝑖 ≥ �𝑣𝑣𝑗𝑗 = 2𝜀𝜀−1𝑛𝑛𝑛𝑛,

�
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖 ≥ 2𝜀𝜀−1𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑛𝑛 = (2𝜀𝜀−1 − 1)𝑛𝑛𝑛𝑛

 For ε ≤ 1, 2 − 𝜀𝜀 ≥ 1, thus,

𝑛𝑛𝑛𝑛 ≤ 2 − 𝜀𝜀 𝑛𝑛𝑛𝑛 ≤ 𝜀𝜀�
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖

 Leading finally to

�
𝑖𝑖∈𝑆𝑆∗

𝑣𝑣𝑖𝑖 ≤�
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖 + 𝑛𝑛𝑏𝑏 ≤ (1 + 𝜀𝜀)�
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖

∎



 The consequences are that we can approximate knapsack arbitrarily well
 It will take time polynomial with respect to 1

𝜀𝜀
and get us an approximation within 

1
1+𝜀𝜀

of the optimal!
 Of course, as 𝜀𝜀 gets closer to zero, the running time shoots to exponential

 Lots of variations of knapsack also have a PTAS
 Partitioning numbers into subsets that are as close as possible has a PTAS
 The Euclidean traveling salesman problem (in which all the locations are 

locations on a plane or in 3D space) has a PTAS
 There are also randomized algorithms that have a high probability of 

being within a factor of the optimal
 Many NP-hard problems do not have a PTAS
 … unless P = NP



 Now you have a sense of the problems we know how to solve
 Greedy algorithms take the best thing at a given moment
 Divide and conquer divides problems into subproblems, sometimes 

improving the speed we could solve with greedy
 Dynamic programming allows us to manage problems that have many 

(but only polynomially many) subproblems
 NP-complete and NP-hard problems appear to take too long to 

solve
 But some can be approximated! 

 Undecidable problems simply cannot be solved with algorithms
 Complex as this course was, it's only a taste of the richness out 

there







 Review up to Exam 1 and a little beyond
 Review Chapters 1-3



 Work on Assignment 7
 Due the last day of class
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