
Week 13 - Wednesday



 What did we talk about last time?
 Finished load balancing approximation
 Set cover approximation







 U2 has 17 minutes to cross a bridge for a concert
 Plan a way to get them across in the darkness
 They have one flashlight
 A maximum of two people can cross the bridge at one 

time, and one of them must have the flashlight
 The flashlight must be walked back and forth
 Each band member walks at a different speed
 Bono: 1 minute to cross
 The Edge: 2 minutes to cross
 Adam: 5 minutes to cross
 Larry: 10 minutes to cross

 A pair must walk together at the rate of the slower 
man's pace





 We've seen knapsack in dynamic programming (but with a 
pseudo-polynomial running time)

 We've seen knapsack as an NP-complete problem
 Now, can we approximate it in fully polynomial time?
 Recall:
 We have n items
 Each item has a weight wi and a value vi

 We want to maximize total value without going over our weight 
capacity W



 Our algorithm will take those items and the capacity W as well 
as a parameter ε

 We will find a set of items S within the weight capacity whose 
value is at worst 1

1+𝜀𝜀
of the optimal!

 And the algorithm will be polynomial for any particular choice 
of ε
 But it will not be polynomial in ε, if that makes sense

 This kind of algorithm is called a polynomial-time 
approximation scheme (PTAS)



 We had a pseudo-polynomial algorithm for knapsack that ran 
in time O(nW)

 The book gives details on how we can flip around weights and 
values to get a dynamic programming knapsack algorithm 
that runs in time O(n2v*) where v* is the largest value of any 
item (if values are integers)

 Let's assume that algorithm is correct and build our 
approximation algorithm out of it



 If v* is a small integer, then we can run the algorithm as is
 However, if v* is large, we can round the values up and use small 

integers instead:
 v1 = 1,983,929
 v2 = 2,437,888
 v3 = 621,653

 Rounding up to millions we get
 v1 = 2,000,000
 v2 = 3,000,000
 v3 = 1,000,000

 We can treat those values like 2, 3, and 1, respectively



 We use a rounding factor b
 Each rounded value �𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖/𝑏𝑏 𝑏𝑏
 Note that 𝑣𝑣𝑖𝑖 ≤ �𝑣𝑣𝑖𝑖 ≤ 𝑣𝑣𝑖𝑖 + 𝑏𝑏
 To get small values, we can scale the rounded values down by 

b:

�𝑣𝑣𝑖𝑖 =
�𝑣𝑣𝑖𝑖
𝑏𝑏

= 𝑣𝑣𝑖𝑖/𝑏𝑏
 Note that the knapsack problem with values �𝑣𝑣𝑖𝑖 has the same 

optimum solution as the problem with �𝑣𝑣𝑖𝑖, if you scale the 
answers by b



 Knapsack-Approx(ε)
 Set b = (ε/(2n)) maxi vi

 Solve the Knapsack problem with values �𝑣𝑣𝑖𝑖
 Return the set S of items found



 We only rounded the values, not the weights, so the answer 
we get is legal

 The algorithm we use as a subroutine runs in time O(n2v*) 
where v* is the biggest value

 Since b = (ε/(2n)) maxi vi, the biggest value vj will also have the 
biggest rounded value:

�𝑣𝑣𝑗𝑗 = 𝑣𝑣𝑗𝑗/𝑏𝑏 =
𝑣𝑣𝑗𝑗

𝑣𝑣𝑗𝑗𝜀𝜀/(2𝑛𝑛)
=

2𝑛𝑛
𝜀𝜀

= 𝑐𝑐 � 𝑛𝑛𝜀𝜀−1

 So our algorithm on rounded values runs in time O(n3ε-1)



 Claim:
 If S is the solution found by our approximation algorithm and S* is 

any other solution such that ∑𝑖𝑖∈𝑆𝑆∗ 𝑤𝑤𝑖𝑖 ≤ 𝑊𝑊, then (1 + 𝜀𝜀)∑𝑖𝑖∈𝑆𝑆 𝑣𝑣𝑖𝑖 ≥
∑𝑖𝑖∈𝑆𝑆∗ 𝑣𝑣𝑖𝑖.

 Proof:
 Let S* be any set such that ∑𝑖𝑖∈𝑆𝑆∗ 𝑤𝑤𝑖𝑖 ≤ 𝑊𝑊.
 Our algorithm finds the optimal solution with values �𝑣𝑣𝑖𝑖 so 

�
𝑖𝑖∈𝑆𝑆

�𝑣𝑣𝑖𝑖 ≥ �
𝑖𝑖∈𝑆𝑆∗

�𝑣𝑣𝑖𝑖



 The rounded values are close to the real values, so

�
𝑖𝑖∈𝑆𝑆∗

𝑣𝑣𝑖𝑖 ≤ �
𝑖𝑖∈𝑆𝑆∗

�𝑣𝑣𝑖𝑖 ≤�
𝑖𝑖∈𝑆𝑆

�𝑣𝑣𝑖𝑖 ≤�
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖 + 𝑏𝑏 ≤ 𝑛𝑛𝑏𝑏 + �
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖

 To make sense of this, we need to bound nb
 Let j be the item with the largest value
 By our choice of b, 𝑣𝑣𝑗𝑗 = 2𝜀𝜀−1𝑛𝑛𝑏𝑏, making 𝑣𝑣𝑗𝑗 = �𝑣𝑣𝑗𝑗
 Assuming that each item could fit by itself in the knapsack

�
𝑖𝑖∈𝑆𝑆

�𝑣𝑣𝑖𝑖 ≥ �𝑣𝑣𝑗𝑗 = 2𝜀𝜀−1𝑛𝑛𝑏𝑏



 On the previous slide, we established that ∑𝑖𝑖∈𝑆𝑆 𝑣𝑣𝑖𝑖 ≥ ∑𝑖𝑖∈𝑆𝑆 �𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑏𝑏
 Since ∑𝑖𝑖∈𝑆𝑆 �𝑣𝑣𝑖𝑖 ≥ �𝑣𝑣𝑗𝑗 = 2𝜀𝜀−1𝑛𝑛𝑏𝑏,

�
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖 ≥ 2𝜀𝜀−1𝑛𝑛𝑏𝑏 − 𝑛𝑛𝑏𝑏 = (2𝜀𝜀−1 − 1)𝑛𝑛𝑏𝑏

 For ε ≤ 1, 2 − 𝜀𝜀 ≥ 1, thus,

𝑛𝑛𝑏𝑏 ≤ 2 − 𝜀𝜀 𝑛𝑛𝑏𝑏 ≤ 𝜀𝜀�
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖

 Leading finally to

�
𝑖𝑖∈𝑆𝑆∗

𝑣𝑣𝑖𝑖 ≤�
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖 + 𝑛𝑛𝑏𝑏 ≤ (1 + 𝜀𝜀)�
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖

∎



 The consequences are that we can approximate knapsack arbitrarily well
 It will take time polynomial with respect to 1

𝜀𝜀
and get us an approximation within 

1
1+𝜀𝜀

of the optimal!
 Of course, as 𝜀𝜀 gets closer to zero, the running time shoots to exponential

 Lots of variations of knapsack also have a PTAS
 Partitioning numbers into subsets that are as close as possible has a PTAS
 The Euclidean traveling salesman problem (in which all the locations are 

locations on a plane or in 3D space) has a PTAS
 There are also randomized algorithms that have a high probability of 

being within a factor of the optimal
 Many NP-hard problems do not have a PTAS
 … unless P = NP



 Now you have a sense of the problems we know how to solve
 Greedy algorithms take the best thing at a given moment
 Divide and conquer divides problems into subproblems, sometimes 

improving the speed we could solve with greedy
 Dynamic programming allows us to manage problems that have many 

(but only polynomially many) subproblems
 NP-complete and NP-hard problems appear to take too long to 

solve
 But some can be approximated! 

 Undecidable problems simply cannot be solved with algorithms
 Complex as this course was, it's only a taste of the richness out 

there







 Review up to Exam 1 and a little beyond
 Review Chapters 1-3



 Work on Assignment 7
 Due the last day of class


	COMP 4500
	Last time
	Questions?
	Assignment 7
	Logical warmup
	Three Sentence Summary of Knapsack Approximation
	Knapsack
	The best approximation yet!
	Algorithm design
	Algorithm design continued
	Rounding notation
	Approximate knapsack algorithm
	Approximation running time
	Approximation bound
	Approximation bound continued
	Approximation bound continued
	Polynomial-time approximation schemes (PTAS)
	And that's that.
	Quiz
	Upcoming
	Next time…
	Reminders

